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ABSTRACT

A numerical method is presented for computing the shape of a vertical
slender jet of fluid falling steadily under the force of gravity. The
problem being solved is formulated as a nonlinear free boundary value
preblem for the cross—-sectional shape of the jet. The numerical method
of solution treats the boundary conditions of the problem as a pair of
nonlinear hyperbolic pseudo-differential equations to be integrated in
the stream-wise direction. The original differential equation appears as
an auxiliary condition. This formulation is shown to be well-posed. The
numerical method is found to be stable and second order accurate. Computa-
tions are presented for jets issuing from several different orifice shapes.
The numerical method of solution appears to be new and may be applicable

to other nonlinear free boundary value problems.

The first author was supported under NASA Contract No. NAS1-15810 while
he was in residence at ICASE, NASA Langley Research Center, Hampton, VA
23665. The research for the second author was partially supported by the
Research Foundation of S.U.N.Y. under Contract No. 240-6135A and partially
supported under NASA Contract No. NAS1-15810.




1. Introduction

We present in this paper a numerical method which we have used to
determine the shape of the free surface of a slender jet of fluid falling
vertically in the presence of gravity. The flow is assumed to be a steady,
three-dimensional potential flow. The solution procedure determines the
cross-sectional shape given the shape and velocity profile at a particular
height (e.g., at an orifice from which the jet emanates). Surface tension
and viscous effects are neglected. The mathematical formulation of the
problem leads to a fully three-dimensional, nonlinear boundary value
problem for Laplace's equation, for which the boundary of the flow is also
unknown. For the case of a slender jet, however, Tuck (1976) and Geer
(1977a,b) derived equations to describe the first approximations to the
cross-sectional shape and velocities of the jet. The problem of determining
the shape is thus reduced to solving a nonlinear two-~dimensional problem in
the cross-sectional plane of the jet. Both Tuck and Geer gave an exact solu-
tion to this problem for a jet with an elliptical cross-sectional shape.
(See also Green (1977).) To date no other exact solutions have been found.

The purpose of this work is to present in some detail the method we
have developed to solve numerically the associated nonlinear free boundary
value problem for jets which fall vertically from an orifice of a specified
shape. The problem is formulated in section 2 and then transformed into a
form more suitable for numerical integration. In sections 3-5, we describe
the numerical method that we have used to integrate the problem outlined in

section 2.




In section 6 we present the results for three of the different orifice
shapes for which our calculations were made. These shapes are an ellipse,

a rectangle, and an equilateral triangle. The accuracy of our method is
discussed in section 7, while the well-posedness and stability of the method
are discussed in section 8.

The numerical method presented here appears to be new and may be
applicable to other three-dimensional free boundary value problems. The
usefulness of most existing numerical methods for solving free boundary
value problems is restricted to one and two dimensions (see Wilson, et al

(1978)).

2. Formulation of the Problem

Let the velocity potential of the jet be denoted by ¢ = &(r,6,z;¢)
and let the shape of the free surface of the jet be described by r = S§(6,z;€)
(see Figure 1). Here r, 8, and z form the usual (non~dimensional)
cylindrical coordinate system, with the positive z-axis pointing vertically
downward in the direction of gravity. The parameter ¢, the slenderness ratio
of the jet, is the ratio of a typical radius of the jet to a typical length
along the jet and is defined precisely by Geer (1977a). The boundary con-
ditions at the free surface are the kinematic condition of no flow through
the surface and Bernoulli's equation with constant pressure. For small

values of €, Geer (1977a) has shown that ¢ and S are given by

3
2(1+2)2 + 2¢(r,0,2z) + 0(e?) (2.1)
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5(6,z) + 0(e) , (2.2)

vhere ¢ and S satisfy the conditions
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oar S“ 36 36 oz
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392 -2(3¢)? 2 3¢ _
(ar] + S [39] + 2(1+2) 3z 0 (2.5)

holding on r = S(8,z). Equation (2.3) follows from Laplace's equation for
the potential while equations (2.4) and (2.5) result from the substitution
of the perturbation expansions (2.1) and (2.2) in the boundary conditions.
Thus, we see that ¢ must satisfy the two-dimensional Poisson equation (2.3)
in the cross-section of the jet, while equation (2.4) essentially prescribes
the normal derivative of ¢ at the boundary of the cross-section. Equation
(2.5) is the additional condition which is needed to determine the free sur-
face. In particular, it is an easy exercise to show that an initially
circular jet with a uniform velocity profile has cross-sections which
remain circular and decrease in area as the jet accelerates.

To compute ¢ and S, we transform the problem (2.3)-(2.5) into a
form that is somewhat easier to deal with numerically. We first note that
we can easily find a particular solution to (2.3) and consequently we

write ¢ in the form

¢ = —%(l+z)-%r2 + ¥, (2.6)
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where { satisfies the homogeneous version of equation (2.3), i.e.,
Laplace's equation. Both ¢ and § are presumed known at z = 0. We

then introduce a new independent radial variable p, related to r by

- r >
=350, 2.7)

Thus, r 1is stretched in a non-uniform manner, but the unknown boundary
r = S(6,z) is mapped onto the known boundary p = 1. We also define the

new dependent variable R(6,z) by
R(8,z) = % s(e,z)2(1+z)* . (2.8)

In terms of the independent variables p, 6, and z, and the dependent variables

Y(p,0,z) and R(6,z), equations (2.4) and (2.5) can be written as

9R _ 2y Y _ o3y
3z = (1+B8%) 30 B35 (2.9
4R Y = (1+R2%) éw.z - éw.z - é.__gi__. (2.10)
9z 30 a6 4 (1+2)? ’ )
where B = %-%§-= %-%'%% . These equations hold for p =1, 0< 6 < 2w,

and z > 0. The differential equation (2.3) then becomes

2y 13 9% _ 3B 13y 1 3% 193% _ )
“-*B)pap(pap) epap+pz 362'2803036'0 (2.11) -
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As a consequence of equations (2.3) - (2.5), we find the integrability

condition
fzw R(P,z)d0 = constant = 27M (2.12)
which expresses the éLnstant mass flux in the jet.
Thus, we seek solutions to equations (2.9) - (2.11) for ¢ and R

in the region 0<p <1, z>0. Once Yy and R have been found, ¢ and

S can be recovered using (2.6) and (2.8).

3. Method of Solution

In this and the next two sections, we shall describe the method we
have devised to solve the problem formulated in section 2. In particular,
in this section we will present the underlying motivation for our method
as well as the specific finite difference formulas we use. Details of the
method we use to solve Laplace's equation will be discussed in the next
section, while our treatment of possible discontinuities (e.g. corners)
in the jet profile shape will be presented in section 5.

Instead of attempting to solve the differential equation (2.11) subject
to the auxiliary conditions (2.9) - (2.10) and (2.12) (as in a classical
approach), we proceed in a different manner. To begin, we temporarily think
of both y and R as functions of z and 6, defined only on the boundary
p=1. Then, in this context, we may regard equations (2.9) - (2.10) as a
system of two nonlinear hyperbolic pseudo-differential equations for Y and
R, with 2z being the time-like variable and 60 the spatial variable. These
equations are hyperbolic because the first-order symbol of the linearized
system has purely imaginary eigenvalues (see section 8). They are 'pseudo"
differential equations because the operator %5- is a non-local operator
on Y, when considered as defined only on p = 1. However, the "auxiliary"
condition (2.11) which holds for p < 1 serves to define y in terms of

op

Y and R on the boundary. Condition (2.12) is then a conservation law
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In order to obtain a numerical approximation to the solution of our
problem formulated in this manner, we use a finite difference scheme defined

on the grid points as follows:

91= (i-1)A®6 i=l,...,N ,

pj=1—(j-—l)Ap j=l,...,M , (3.1)
z_ =nhz n=0, 1, 2, 3,... ,

n

where A6 = 2m/(N-1), Ap=1/(M-1), and Az 1is chosen to satisfy
appropriate stability and accuracy criteria (see sections 7 and 8). Note
that 91 = 0, GN = 2T, zg = 0, Py = 1 and Py = 0. We then use the
MacCormack scheme (MacCormack (1969)) to solve equations (2.9) - (2.10).
In particular, if we define the vector ;(B,z) by 3 = (R,w)T, then

equations (2.9) - (2.10) can be written as

W _ 3 dw 3y
w >  ow
ow ow .2
3z F[z"’" 36° Bp] ’ (3.2)
where the form of the vector -P)‘ can be determined from the right-hand sides
of (2.9) - (2.10). We employ the forward and backward difference operators,

D+ and D_, respectively, defined by

(w,, . -w

-n -n n
+1 i+l i) /46

>n _ on_-on

D__wi = (wi wi_l)/AG . (3.3)
1 >
w, = w(ei,zn)




Then the forward-backward MacCormack scheme we use is given by the following
two-step formula:

In+l >n n]

+n 2 -on
(predictor): i ~v t AzF[zn,Wi,D+Wi,Dp¢i (3.4)

g
|
€

3 3 3n+
onl é‘-m ;;riﬁl Sotl ) Sml o oantl) (g o

Voo p i

(corrector):
Here Dpw? is an approximation to -%% on p=1 at 0 = 61 and z = z ,
which we shall describe below. In order to maintain symmetry, the forward-
backward MacCormack scheme is alternated with the backward-forward scheme,
which uses backward differences in the predictor step and forward differences
in the corrector step. Also,it was found that the conservation law (2.12)
was satisifed more closely when the quantity B in equations (2.9) and

(2.10) was approximated as

n,, N, n
D,Ry/(Ry+Ryyq)
and this form was used in all the calculations given here.
The term Dpwz in (3.4) and (3.5) is computed by first solving for
an approximation to the solution ¢ of (2.11), with w? specified on the

boundary. The approximation is given by

n _ _ - -2
A1P51P5-3 W5 5-17%1,5) ~ Py ¥y 570y 540 | 40

n -1
-C,p.(W., . =Y. . -
P55, 5o1 Ve 5410 280+ Uy 20,

-2
1,57 V11,57 (49

- P

| g - -
3| i+[wi+l,j—l -wi,j—l l"i+1,j+1+wi,j+1]

=1
1-Wi,5-1 7 Yio1,9-1 T Vi1t wi_l,jﬂ);(zApAe) =0 . (3.6)



Here, wi,j = u);lj": \P(Dj,ei’zn), and

n_ n n, n -
Bis = (DtRi)/(Ri+Ritl) ’

n _ n 2 n 2 .
n = n _ n

C; = (Bj,-B,)/n6 .

In equations (3.6) and (3.7) we have used second order accurate difference
approximations to the derivatives of Y and R. Equations (3.6) are solved
by successive over-relaxation (see section 4). Once w? B is determined

?

the term Dpwz is computed as

n n n 11
Do¥y = G0y, 1= 4y 0% ¥y, 30/200 (3-8

which is a second-order one-~sided approximation to %% .

Equations (3.1) - (3.8) describe our numerical scheme to solve the
problem of section 2. For each 2z step, equations (3.6) are solved twice,
once corresponding to the predictor steps (3.4) and then again for the
corrector step (3.5). The fact that our scheme is formally second order
accurate will be shown below. In section 7, the second order accuracy of
our method is confirmed by the results of several numerical experiments.

We conclude this section by showing that the scheme given by equations
(3.4) - (3.5) is formally second-order accurate. To do this, we note that

->
if w 1s a smooth function of 2z then by Taylor's theorem
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> -
> .2 o W)* % ]
Wz ) = Wz + Bz 0 (z) + 2 SE 0 . (3.9)
- Let A® and Ap be proportional to Az and for convenience set
»n -
w o= w(l,e,zn) ,
Pt =DW ,
q" =D ¥(1,8,z) ,
F: = F(Zn9W ’pi’qn)
Then, from (3.2)
=
ow _ sn  ow n f2n . 2n) 2
3 (zn) = F(z_,w , TR Dpw ) = %lF+ + F_‘+ 0((Az)*) , (3.10)
and
32w o |7 »n >0 N )
= Az +— +
Az a2 (zn) Az 5 'F(zn,w ,P_»q ) O(AZ)$
oF. , oF
= Bz g4 A
oF. F
F- ,-n -
o3 et AT+ 00D (3.11)
P-
where A;n = ;n+l - 3“, etc.
— >+l . . . .
If w is defined by the right side of (3.4), i.e. the predicted value
of ;n+1, and
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Sn+l _ . ontl ~n+l _
P =Dw , and q mecl,e,zn+l) ,

then

»>n Sn+l >N
w

Aw = -w +0((02)%) |,
Sn+
N R R S I
A" = 'in+1 - 4"+ 0((82)%) . (3.12)

Substituting equations (3.10) - (3.12) into (3.9), we obtain

Wz ) = wz) + 5T+ %E{%‘_% A §+—§:§- GRS
* % R34 % <a“+1-q“)§ +0((82))
= 33(z,) + [W(zy) + bz T
+ e Fz_, o LETLE! 40

which 1s equivalent to equations (3.4) - (3.5), and shows that the scheme
is formally second order accurate.

4, Solution of Laplace's Equation

To use the difference scheme (3.1) - (3.8) to advance the solution from

z =z to z=2 requires solving the difference approximation (3.6) to

n+l
Laplace's equation for both the predictor and corrector steps. The values

~n+1

of wn and ¢ in the interior (i.e., p < 1) are used with formula (3.8)
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to compute Dpwn and Dpwn+l, respectively, which are the approximations
to the normal derivative'of Y at p=1.

The difference approximation (3.6) to Laplace's equation is solved
by point successive over-relaxation (SOR) using the natural ordering of

grid points. The SOR algorithm is given by

Skt KoLs o, L ,k)_ ( ko Lk ))
biry o TVig ey ("j %(“’11 1 Vi )P\ %L TV ) e

i
Skl Lk -1
- 4Py ( i,3-1 wi,j’rl) (280)

Jk+1 -2

+ ‘pi+1j zwij +\pi 341 ) (A6) (4.1)

_ | K+l _ o Sktl sk ]
Py Bt [‘1’1+1,3 17 Vi1 " Va5 T Vs, 3+1

1
-4

s ktl Jk+1
P lpi,j"'l wi -1,j-1 wi j+l+wi 1’J+1]$ (ZAOAG)

i~

!
|

where, to simplify notation, we write wi’§ for the kth iterate
s

for either W? $n+1

. . . . The iteration parameter ., is given by
1’J 1,J 1

2

+(1)7) (6.2)

5, - o (a, (55)

where

_~1/2 /4
w=2/{1+2.40 (142)  2p), (4.3)
and M is defined by equation (2.12). Formula (4.2) is a normalization,
dividing the standard SOR parameter w by the absolute value of the co-

efficient of wi i in the approximation (3.6).
>
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Formula (4.3) giving the SOR parameter ® will be discussed later in this

section. The coefficients A and Ci are functions of R? or
R ntl and are given by formulas (3.7). -

1
1 i’§+l, was determined

i’ Bii’

The value of w’k+ at the origin, i.e.

+
from the values at the neighboring grid points, wi’ﬁ—i s by means of
?
the formula
N-1 N-1
sktl Sk+1
V' y —121 A+C) ¥ izl (A, +C)) o (4.4)

Formula (4.4) is derived by integrating Laplace's equation (2.11)

over a disc of radius € centered at the origin. This gives

27
e [ (148%) %% (€,0) do+

0

= ¥(e,0)d6 =0 . (4.5)
0 20
If € 1is taken to be XAp and the integrals are approximated by sums

while the integrands are approximated as

Y ~ -

and
VBho,8,) = Wy H Y D/2

then equation (4.5) yields

N-1 N-1
LM Wimer~ ¥ LG Wy y g F ¥y ) =0 (4.6
= i=1
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Here, as in equations (3.7),
=~ 2 o~ _a__ -
A = 1482%  ,  C =3zB(8)
i £
Since wi,M is independent o Gi and

N—lC =Nil R oR RymRy
=1 ¥ 421 R+ B RitRi

AG~2 =0,

formula (4.4) follows easily from formula (4.6). Note that formula
(4.4) is formally second-order accurate, as is the approximation (3.6).
After equations (4.1) and (4.4) where applied for i< N, the

periodicity conditions

Skl ,kt+1l
Y103

N.j , 1<j<M , (4.7

were imposed. The iterative procedure given by formulas (4.1) - (4.4)
was terminated when certain convergence criteria were satisfied. These
criteria will be discussed later in this section.

As noted at the beginning of this section, the approximation to
Laplace's equation must be solved twice to advance the solution by one
z-step. Solving these difference equations is the most time consuming
portion of the algorithm. By using linear extrapolation to obtain the
initial iterate for the predictor step the solution time was reduced

dramatically. In particular, for the predictor step, the values of

@;+;’O , the starting values for the iteration, were obtained as
~n+1,0 n n-1 .
wi,j = zwi,j - wi,j i=1,...,N 4.8)

j=2,...,M
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n+1
i’l

by equation (3.4). For the corrector step the initial iterates were taken

for the interior values. The values of on the boundary were given

to be the values of the predicted potential in the interior, i.e.

nt+l,0 - antl .
L U3 » 1=l (4.9)
j=2,...,M .
The values of w:+i on the boundary are, of course, given by formula (3.5).
2

For both the predictor and corrector steps the SOR procedure was
terminated when the relative change between iterates measured in the

2%-norm was less then a small parameter, €, i.e. when

l Ifﬁnﬂ"k _ mn"'l,k—ll l l ,wn"'l,kl ,

<€ . (4.10)

Then we set

n+l n+l,
Uiy =¥ ‘
and similarly for wn+1. For the computations described in this paper ¢
was taken to be 10 °., The number of iterations to compute either Wn+l
or wn+1 was restricted to be less than 250. When this limit was

achieved, the last iterate was taken to be the solution. This limit

was encountered only for z=Az (and sometimes for 2Az) when [[&[{2

and Ilwiiz were very small, or for larger values of =z when the
solution was no longer well behaved due to lack of resolution (see
section 6). Since for our examples the potential Y is zero at z = 0,
the condition (4.10) is not very appropriate for small values of n.
Typical values for the number of SOR iterations required to solve

for the potential are given in Table I. Column a) gives the number of
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iterations when the linear extrapolation (4.8) was used for the predictor
step and column b) gives the number of iterations when the initial values
for the predictor step were the values of potential at the previous

values of 1z, i.e,

n

n+1,0
v 1,3

1,3 =9 (4.11)

Note that the total number of iterations per step using (4.11) is more
than five times that required when the linear extrapolation (4.8) is used.
This reduction in time more than justifies the extra storage required to
keep the values of wn-l.

The formula (4.3) for the iteration parameter w was obtained in
the following way. The difference equations (3.6) are a second-order
approximation to Laplace's equation on the region r < 5(6,2) with a
non-uniform grid given by equations (3.1). For the usual second-order
accurate five-point difference approximation for Laplace's equation on

a regular mesh, Garabedian (1956) showed that the optimal iteration

parameter for SOR is given approximately by

2
© 7 wgh/vZ o, (4.12)
where h 1is the mesh width and k1 is the first eigenvalue of the

Laplacian on the domain being considered. He also pointed out that the

value of kl can be estimated from below by the Faber-Krahn inequality

1/2

T
k) 224 () =K

where A is the area of the domain.
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In the present case, the cross-sectional area A varies as a function

of z and is given by
A= 2mM (1+2)"1/2
where M 1is defined by equation (2.12). Thus we have
B = (L2212 (1+2)t

Using this as an estimate for k1 in equation (4.11), we find

2
T 141.2M7Y2 (142)V%n

w

In the present context it is not clear what value should be given
to h. On intuitive grounds it was taken to be proportional to Ap.
Moreover, the Faber-Krahn inequality is sharp for circular domains and
is less accurate for elongated and non-convex domains. Thus, the

quantity k.h in formula (4.12) was estimated by multiples of ElAp

1
and, after some experimentation, it was found that ZElAp or ﬁlAp

worked very well in most of the computations considered in this paper.

5. The Treatment of Corners

The scheme (3.1) - (3.8) was used to compute the shape of jets
whose cross-sectional shapes contained corners or cusps. Examples of
such jets are those which emanate from rectangular or triangular
orifices. 1In this section we will examine the finite difference
approximation to the solution in the vicinity of such corners.

For this purpose, consider a corner such as that illustrated in

Figure 2 and assume that R and { are symmetric about the corner,
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that is,

R(60+-6) R(eo-e)

$(8,+6) = v(6,-8)

where 60 is the angular coordinate of the corner. At such a corner

d9R/96 and -%% will change sign, i.e.

oR

3R _ R .
o5 (8,+8) = - 52 (8,-0)
| L' -
W6+ 0) = - g5 (050

and 9R/36 will be discontinuous. (Recall that R 1is related to the
shape function S by equation (2.8).) However, notice that these

,
discontinuous quantities appear in equations (2.9) - (2.10) only as

products or squares (recall that B = 1 EES so that the right-hand

2R 36

sides of equations (2.9) - (2.10) are continuous at a symmetric corner.
In order to obtain accurate solutions for jets having such corners, it
is essential that the finite difference scheme properly portray this

behavior of the differential equationms.

R 3y
99 90

(2.9). Assume that the grid is as shown in Figure 2a, with the corner

Consider, for example, the term which appears in equation

grid point having index 1. The discontinuous change in sign of 23R/938

at the corner is reflected in the change of sign between D+Ri and

D Ri. Similarly, D+wi and D_wi are of opposite sign. Thus,

Q
Q

R 3P _
=55~ ;5(D+Rin+wi + D_RiD_lbi) R (5.1)

Q)|
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which is an accurate approximation to the continuous function gg 30
on the boundary. Similarly, the squares of f and 0yY/96 are
approximated well by the average of the squares of the one-sided
differences. In fact, if R and Yy each have one-sided second
derivatives at the corner which are continuous and one-sided third
derivatives (which may be discontinuous but bounded), then the above
approximations are formally second-order accurate. We note, however,
that the central difference approximations to %% and %%- about

the corner point vanish and thus give inaccurate approximations.
Also, if the grid points are placed symmetrically about the corner
without having a grid point at the corner, as in Figure 2b, then for
those grid points nearest the corner the approximation (5.1) will not
be accurate. Central differehces will not be accurate in this case
either. ‘

Consider now the treatment of these terms in the MacCormack scheme
(3.4) - (3.5) when the grid is as in Figure 2a. As noted above the
approximations such as (5.1) are formally second-order accurate at such
corners if R and  satisfy appropriate conditions on their one-~sided
higher derivatives. This implies that equations (3.10) and (3.11) are
valid and, hence, that the MacCormack scheme is formally second-order
accurate even at such corners (see also section 7).

Laplace's equation in the form of equation (2.11) also contains
the terms B2 and %E (B%%). The particular form of differencing
for these terms in the difference approximation (3.6)-(3.7) was chosen in
light of the above considerations. Therefore, one would expect that
the approximation (3.6)-(3.7) is more accurate than if centered

differences were used for the derivatives with respect to 6.
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6.  Examples

Several examples of thin streams falling vertically through an orifice
of a specified shape were calculated using the scheme outlined in the
previous sections. We present here three of these examples. These and
other examples are discussed in more detail elsewhere (see Geer and
Strikwerda (1980)). For each example the initial conditions were
Y =0 and R(e,z),.i.e. 5(6,z), specified at z = 0. Note that the
condition Y =0 at =z = 0 corresponds to a jet that is emanating with a
uniform velocity profile. Thus, in the notation of section 3, we set
z =0, wg,j =0, and Rg = R°(ei), where R9(0) was specified by one
of the following:

1. An ellipse, RO =1% (.25 cos?8 + sin?6)~!, where the semi-axes
of the ellipse are 2 and 1 (Figure 3).

in sec?(6-2m%2/3) where the

2. An equilateral triangle, RO = X% s
2=0,1,2
length of the side of the triangle is 2/3 . (Figure 4)

3. A rectangle, R° = % min (sec?8, 4 csc?6), where 2 and 4 are
the lengths of the sides of the rectangle (Figure 5).

For each example the origin was located at the center of mass of
the shape as required in the derivation of the basic equation (2.3) -
(2.4) (see Geer (1977a)). The corresponding figures show cross-sections
of the jet as several values of =z.

The primary purpose of the first example, the ellipse, was to check
the accuracy of the numerical scheme. The numerical solution was compared
with the analytic solution presented by Geer (1977a). The calculation of
this analytic solution involved only the straightforward numerical

integration of nonlinear ordinary differential equations, and consequently

we assumed that this solution is known exactly.
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Figure 3 shows the cross-sectional shape of the jet at various values
of z. At 2z = 0, the ellipse had an aspect ratio of 2. As =z increased,
the shape of the jet became less eccentric, was nearly circular at about
z = 4,9, and then assumed an elliptical shape with the direction of the
major and minor axes exactly interchanged with those of the original axes.
The cross~sectional shape became more and more elongated as =z increased.
At z = 14.0, the numerical solution with N = 101, M = 31, and Az = .1
agreed with the analytic solution to within 1% relative error in the 22—

and 2}- norms, and to within 27 relative error in the maximum norm.

In all of our examples the computations terminated when the outward
moving portions became sufficiently elongated so that they could no
longer be resolved adequately by the uniform grid used for the angular
coordinate. The numerical break-up of the solution occurred soon after
the last cross-section shown in each case. The conservation law (2.12)
was satisfied to within .5% relative error in all the cases shown here.

The other examples had for initial shapes an equilateral triangle
(Figure 4) and a rectangle (Figure 5). The initial length of a side of
the triangle was 2¥3 units, while the sides of the rectangle were 4
units and 2 units. In these examples, for small values of 2z the cross-
sections decreased in area, but maintained essentially the same shape.
In particular the discontinuities in the slopes at the corners were
propagated for some distance in z. TFor larger values of =z the shape
became non-convex as those portions of the surface that had been corners
"buckled-in". Those portions of the surface that had originally been
the sides formed the new extremities of the cross-sectional shape. For

the case of the equilateral triangle the extremities all extended outward
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as 2z increased. For the case of the rectangle the major extremities
extended outward and the minor extremities moved slowly inward. The

numerical break-up of these cases occurred along these outward moving
extremities as noted above.

We point out that the results for the equilateral triangle are con~-
sistent with those of Bidone discussed by Rayleigh (1879), i.e."...a vein
issuing from an orifice in the form of a regular polygon, of any number of
sides, resolved itself into an equal number of thin sheets, whose planes are
perpendicular to the sides of the polygon." (See also Rayleigh (1945).)

However, Rayleigh (1879) implies by the sketch of the cross-sections
of the equilateral triangle that the triangle assumed a hexagonal cross-—
section. Our calculations did not produce such a shape and we presume
that this discrepancy is due to mistaken observations near the point
where the cross-section was circular.

The example with the rectangular initial shapewas run with N = 81,
M= 31, and Az = 0.1. The triangular shape was run with N = 61, M = 31,
and Az = 0.]1. In these examples, the value of N was chosen so that a

grid point would be at or very mear the corner of the original shape.

7. Numerical Accuracy

As shown in sections 3 and 5, the finite difference formulas used to
approximate the system of equations (2.9) - (2.11) are all formally second-
order accurate. Moreover, in the numerical calculations, the parameter Az
and the convergence criteria for the SOR iterations were all chosen with
the purpose of maintaining the second-order accuracy. Nonetheless, it must

be demonstrated that the overall scheme is in fact second-order accurate.
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A series of computations was made to determine the accuracy of the
scheme. As noted in section 6, an alternative procedure can be employed
to determine the shape of the jet when the jet emanates from an elliptical
orifice. This alternative procedure requires solving a nonlinear
ordinary differential equation of second order for the aspect ratio.

This equation was integrated using a fourth order Runge-Kutta method
with a small step size. Because of the high accuracy employed, the

numerical solution of this equation was assumed to be exact for the

purposes of this comparison.

The difference scheme given by equations (3.1) - (3.8) was used
to compute the shape of the elliptical jet (with the initial data given
in example 1 of section 6) up to z = 10.0 for various values of N
and M. The z-step, Az, was chosen as 10/(N-1) so that integrating the
finite difference scheme to z = 10 required N-1 complete steps. The
SOR convergence parameter € was 10_5, while the values of N were 21,
41, 61, 81, and 101 and the values of M were L3(N-1) + 1.

The results are displayed in Table II for the errors measured in the

22— and maximum norms. The last two columns give the change in the loga-
rithm of the error divided by the change in the logarithm of (N-1) for

successive values of N, i.e.

log (.0116) - log (.0536) _
log 40 - log 20

-2.21 , ctc.

The closeness of these entries to -2 indicates that the overall method is
second-~order accurate. The 22-norm errors listed are relative errors, i.e.
the Zz—norm error divided by the lz—norm of the solution.

Comparisons were also made to study the effect of the placement of

grid points on the computation of jets with corners. As discussed in
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section 5, the placement of grid points, as shown in Figure 2a should

be more accurate than that shown in Figure 2b. In those cases without

a grid point at the vertex (Figure 2b) the discontinuities in the
tangents were smeared out almost immediately; otherwise, the solutions
are similar to those seen in Figures 4 and 5. We emphasize that for

such shapes we have no means of ascertaining which solution is more
accurate. However, in view of the analysis given in section 5, it would
appear that the results are most accurate when a grid point is at or

very close to the vertex of the corner.

We note also that the symmetry of the results shown in Figures 3 - 5
is not imposed on the computations but results only from the initial
symmetry at z = 0. By alternating the forward-backward MacCormack
scheme with the backward-forward scheme, asymmetric discretization errors
are presumably minimized. However, in runs with the elliptical jet using
only the forward-backward scheme, the accuracy and symmetry were not

severely affected.

8. Well-posedness of the Problem

We will now discuss the well-posedness of the system of equations
(2.9) - (2.11). 1In particular, we shall derive a necessary condition to
insure the growth rate of small perturbations to the solution of equations
(2.9) - (2.11) is bounded. We will then indicate how, by a similar
analysis, we could demonstrate the stability of our numerical scheme.

An analysis of the well-posedness of the system (2.9) - (2.11) is
necessary because the original problem, before the perturbation in the
slenderness ratio, is an elliptic problem. Solving such a problem by
marching in any particular direction is not a well-posed method. It
must then be shown that to solve the equations (2.9) - (2.11) by marching

in the z-direction is a well-posed problem.
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To begin our analysis, let (ﬁ,i) be a smooth solution of the system
(2.9) - (2.11) and consider another solution (R,y) of this system of the

form

R + 2n§§

o)
]

and (8.1)

b+ .

<
(1

Here n 1s a perturbation parameter and (2n§§,n$) represent small
perturbations in R and @, respectively. Thus, to investigate the
well-posedness of the system (2.9) - (2.11), we shall first determine
(to first order) the system of equations satisfied by (ﬁ,&). We shall
then show that this linear system is well-posed if a certain scalar
quantity o = 0(6,z) is non-positive.

In order to determine the equations satisfied by (ﬁ,@), we sub-
stitute (8.1) into (2.9) - (2.11), expand the resulting expressions in
a Taylor series about n = 0, and then set the coefficient of n in
each equation equal to zero. In this way we obtain the following system

of equations.

= 3R _ 22,00 _ =30 _ =00 _ 3P, oR
R 5, = A+B)30 - B3g + (Zﬁﬁm 36736

0
) (8.2)
5%
—Z'é—z-R .

3y _ 2,99 30 _ 3y 8% , =,39,% 3R

R, = Q+B3 5, " 3038 T BGp) Do
(8.3)
-3 , 3 R? '

°(4R5!z}' *3 (l+z)2)R ’




52 Y, B 13p,1 3% _ ,z13% _
(1+8)oao(ap) epap+p§é?' Zspaoae'

(8.4)

- 20 & D
2G5 35 63 -3 3 B+ 530 3
where B = %ﬁ-%%. Here equations (8.2) -~ (8.3) hold on p = 1, while
equation (8.4) holds for 0<p<1l and 0<6<2m.

We now wish to examine the behavior of (K,J) in the neighborhood

of a point (eo,zo) on the boundary p = 1. We are particularly interested
in the behavior as a function of z of solutions (R,J) which have high

frequency components in the angular variable 6. Thus, we shall consider

solutions whose initial values at z = z are of the form
R(8,2y) = *1 O (o)

are similarly for U, where w is a positive parameter and £, is a
function of 6. We will then construct a formal asymptotic series for
(R,¥) in positive powers of 1/w. This approach is similar to that of
Lax (1957).

It is a result of the analysis that powers of w to half-integer
powers enter the expansion in a natural way. Thus, we look for solutions

to (8.2) - (8.4) of the form

. 1/2 @ _s
g = 1t ) Ry /5 (82200 372 (8.5)

j=0

m _ ei(mﬂ,]ﬂul/zh/z) 3‘0 {pwk1m1/2k1/2 w-/z(e’z’p) (8.6)
3=0 ’

+ &J\j/z(e’zsp)}w-j/z ]
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where w >> 1 and 21(8,2), £./2(6,2), ki (8,2z), ki/2(6,2), Ry/20
wj/z’ and @j/z are all functions to be determined. The first term in
the brackets in the expansion (8.6) represents a solution to the homogeneous
version of equation (8.4) (i.e. equation (8.4) with R = 0), while the
second term represents a particular solution of this equation corresponding
to R given by equation (8.5).

Substituting the expansions (8.5) and (8.6) into equation (8.4) and

equating coefficients of like powers of w results in the relations

A 8 ~ T
Yo = P 5%‘Ro, Y12 = p g% Ri/2, (8.7)
and
1 1
o am Y
ky = 1-1i8 930 ° ki/2 1- 4B gglll s (8.8)

if %3—1-3 0, and

1 1
- - - - 3R /2
K1 =" 1448 38 » K1/2 7 7 1445 36 (8.9)

if %%L <0

In the following we will assume, without loss of generality, that 09£;/96
is non-negative since by taking the complex conjugate of (8.5) and (8.6)
we obtain a solution of similar form with 3%£:/398 of opposite sign.

We now substitute the expansions (8.5) and (8.6) into equations (8.2)
and (8.3) and equate like powers of w, using the relations (8.7) and (8.8).

The terms containing first powers of w give the equations

1 4 2'l - 1
2R Ry (a - N ®Rr) = U/ -—-—3

@@

6
= oL '3
v (22 ZZAN =
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where A = (B Sm- -Jk)/ZR .

From this we conclude that Yg= 0 and

L 3%
=21 _ ) 221
3z A Y 0. (8.10)

The terms with wl/? give the equation

m..lm:-
oz 06

Wd“

9%,
2 %’—:Ll i (8.11)

Equation (8.10) is similar to the eikonal equation of geometrical
optics, and in particular it shows that £; which is initially real

will remain so, being constant along the characteristics given by

3—9+x(e z) = 0.

Thus this system has real characteristics as do hyperbolic systems. From
equation (8.11) we see that 12 will not be real unless Yy2 R, 1s

purely imaginary. If
Im 21/2(2,6) <0

then from equation (8.5) we see that the amplitude of the solution will

grow as

e_wl/Z Im 21/2

and, thus, the initial value problem for equations (8.2) and (8.3) will
be ill-posed in the sense of Hadamard (see Kreiss (1963)).

From the zero-th order terms in w we obtain the relation

g_éh (%&)2 - 2R (8.12)

where
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%9 _ 0 _3_R 3% | 13RI
@ =Xa5s8 - 25, T % (1+2)? 3psz T R 3z 3p

Thus, we see that if & is non-positive then y1/2/Ro will be
purely imaginary and the amplitude of the solution will not grow
with w, while if a 1is positive then the high frequency perturbations

1/2
Im £
will grow exponentially as e |1m 21/2]

Thus, it is a necessary condi-
tion for well-posedness that o be non-positive.

In the numerical experiments the quantity o was approximated using
(formally) first-order accurate one-sided differences. It was found that
this approximation to o was negative throughout most of the computation.

At those values of z for which the thin sheets were not being adequately
resolved, 0 became positive. However, the solution was not smooth so
that the computation of o may have been so inaccurate as to be meaningless.

It appears then that the system of equations (2.9-2.11) is well-posed for
each of the examples considered here, at least for those values of z for
which the solution has been computed. We conjecture that is is well-posed
for all values of 2z, We believe that the break-up of the numerical

solution is purely a numerical phenomena, caused by inadequate resolution,

and not caused by a loss of well-posedness of the differential equationms.

As a demonstration of the similarity of our system to hyperbolic systems,
we numerically integrated the system with the initial data of example 2 from
=0 to 2z =2 and then integrated back to z = 0. The initial conditions
were recovered to within the numerical accuracy of the method. Thus this
system is reversible as are hyperbolic systems.
Finally, we offer the following comments on the stability of the
difference scheme which is described in section 3. As in the above

discussion of the well-posedness of the differential equations, all that
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can be done is to analyze the stability of the linearized problem. The
analysis of the stability of the linearized system mimics the above
analysis of the well-posedness although it involves more complicated
algebraic expressions. The amplification factor of the von Neumann

1/2 3
RICATLE WO R

analysis corresponds to the factor The actual

details of the derivation are omitted in the interests of brevity.
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Table I

SOR iterations for several values of =z

for a rectangle 81 X 31, Az = .1
a. Linear extrapolation b. Previous value
Eq. (4.8) Eq. (4.11)
Iterations Iterations
Predictor/Corrector Predictor/Corrector

1.0 75 75 >250 48
2.0 22 23 >250 26
3.0 13 13 >250 16
4.0 12 11 247 12
5.0 14 12 217 15
6.0 14 13 181 15

7.0 14 13 147 17
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Table II

Analysis of the error and accuracy

of the method for elliptical jets.

N-1 22 error max error 22 order
20 5.36 x 1072 2.00 x 1071 .
=2 -2
40 1.16 x 10 2.93 x 10 -2.21
-3 -2
60 5.15 x 10 1.12 x 10 -2.00
-3 -3
80 2.89 x 10 5.93 x 10 -2.01
3 3

100 1.85 x 10~ 3.74 x 10° ~2.00

Qm order

-2.77

-2.37

-2.21

-2.07
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Figure 1. Sketch of a vertical slender jet, with an indication of the
coordinate system. The locus of centroids of the cross-sections of the jet
form a straight line (in the direction of gravity), which we choose to be
the z-axis. Then r, 8, and 2z form the usual cylindrical coordinate system,
where € 1is measured from any convenient plane through the z-axis. The free
surface of the jet is denoted by r = S(8,z;¢).
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Figure 2. Examples of the placement of gridpoints near a corner.

10

N
L]
o
o~

N Fah
- N B

D

S

Praril BN
ST

Figure 3. Cross-sectional shapes at several values of =z for a jet
with an initial shape of an ellipse.
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Figure 4. Cross-sectional shapes at several values of z for a jet
with the initial shape of an equilateral triangle, with
side of length V3.
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Figure 5. Cross-sectional shapes for a jet with the initial shape
of a rectangle with sides of length 2 and 4.




Figure Captions

1. Sketch of a vertical slender jet, with an indication of the coordinate
system. The locus of centroids of the cross-sections of the jet form a
straight line (in the direction of gravity), which we choose to be the
z-axis. Then r, 6, and 2z form the usual cylindrical coordinate system,
where 0 1is measured from any convenient plane through the z-axis. The

free surface of the jet is denoted by r = 5(8,z,e).

2. Examples of the symmetric placement of grid points near a corner.
In example (a) a grid point is placed at the vertex, while in example

(b) the corner lies between two grid points.

3. Cross—-sectional shapes at several values of 2z for a jet with an

initial shape of an ellipse.

4. Cross—-sectional shapes at several values of 2z for a jet with the

initial shape of an equilateral triangle, with side of length 2V3.

5. Cross—sectional shapes for a jet with the initial shape of a

rectangle with sides of length 2 and 4.




